Convolutional Non-homogeneous Poisson Process with Application to Wildfire Risk
Quantification for Power Delivery Networks
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Background & Objective
2018 Camp Fire

(J Overhead power lines across forests and grasslands are especially vulnerable
to wildfires. For example, the 2018 Camp Fire caused by the faulty electric
transmission line killed 85 people, destroyed over 15,000 structures.
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Wildland Fire Potential Index (numerical rating of fuel combustibility).

Research Objective

To propose a data-driven approach
that can be applied to quantify
wildfire risks on power delivery
networks considering the dynamic
environmental factors.

" Only reflects the long-term trend of
wildfire risks on a large scale.

" Does not consider the wildfire inciden
data and the power grid topology.

Methodology

[ The proposed structure of the intensity function for the underlying spatio-
temporal point process.
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Cumulative effects from the

l"E.Q.i

' The spatio-temporal dependency -<
i among networks. i

= ¢(i,t) incorporates the current effect of covariates at time t for segment i

through a linear model. x (i, t) denotes the covariates associated with segment
[ attime t, B is a vector of covariate effects.

= h(i,t) explains how historical covariate information (before time t) associated
with the neighboring segments of segment i (log A(i’,t — A) for i’ € ;) affects
the intensity of segment i at time t.

Convolutional Non-homogeneous Poisson Process

Consider a linear network L = U}, l; with N segments. The event
process on each segment | is modeled as a Non-homogeneous Poisson
Process (NHPP) with is log intensity being given by an infinite series:
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required

A Recurrent Neural Network Representation
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Figure 1: The processed datasets obtained from the U.S. EIA, NASS, and NOAA
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Tablel: MLEs of the effects of key environmental factors

Parameters ¢(Scaling) [,(Intercept) [;(NDVI) p[,(TMP) [3(WIND) [S,(SPFH)

Estimate 0.7 -2.748 -1.226 0.661 0.887 -0.664
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Figure 2: Estimated (the first one) and predicted (the last two) wildfire risks

= Different power line segments are associated with different wildfire risks due
to the spatially- and temporally-varying covariate information.

" |tis also seen that the predicted wildfire risks change smoothly over time.

Validation and Comparison
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Figure 3: Distribution of estimated wildfire intensities on power transmission lines.
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Figure 4: The ranking of the estimated risk for the lines (with fires) among all lines.
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Conclusions

1 We proposed a new spatio-temporal point process model known as the
Convolutional NHPP on a linear network. The proposed approach has been
applied to model and predict wildfire risks on major transmission lines in
California, utilizing the real datasets.

1 The summary of this research can refer: Wei, G., Qiu, F., & Liu, X. (2022).
Convolutional non-homogeneous Poisson process with application to wildfire risk
guantification for power delivery networks. arXiv preprint arXiv:2301.00067.



